Access to the carbamate tunnel of carbamoyl phosphate synthetase.
نویسندگان
چکیده
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli revealed the existence of a molecular tunnel that has been proposed to facilitate the translocation of reaction intermediates between remotely located active sites. Five highly conserved glutamate residues, including Glu-25, Glu-383, Glu-577, Glu-604, and Glu-916, are close together in two clusters in the interior wall of the molecular tunnel that enables the intermediate carbamate to migrate from the site of synthesis to the site of utilization. Two arginines, Arg-306 and Arg-848, are located at either end of the carbamate tunnel and participate in the binding of ATP at each of the two active sites within the large subunit of CPS. The mutation of Glu-25 or Glu-577 results in a diminution in the overall rate of carbamoyl phosphate formation. Similar effects are observed upon mutation of Arg-306 and Arg-848 to alanine residues. The conserved glutamate and arginine residues may function in concert with one another to control entry of carbamate into the tunnel prior to phosphorylation to carbamoyl phosphate. The electrostatic environment of tunnel interior may help to stabilize the tunnel architecture and prevent decomposition of carbamate through protonation.
منابع مشابه
Structural defects within the carbamate tunnel of carbamoyl phosphate synthetase.
The X-ray crystal structure of carbamoyl phosphate synthetase (CPS) from Escherichia coli has unveiled the existence of two molecular tunnels within the heterodimeric enzyme. These two interdomain tunnels connect the three distinct active sites within this remarkably complex protein and apparently function as conduits for the transport of unstable reaction intermediates between successive activ...
متن کاملStereochemistry of binding of thiophosphate analogs of ATP and ADP to carbamate kinase, glutamine synthetase, and carbamoyl-phosphate synthetase.
Thiophosphate analogs of adenine nucleotides were used to establish the absolute stereochemistry of nucleotide substrates in the reactions of carbamate kinase (Streptococots faecalis), unadenylylated glutamine synthetase (Escherichia co(i). and carbamoyl-phosphate synthetase (E. coli). :llP NMR ~vvas used to determine that carbamate kinase uses the B isomer of Ado-5’.(2-thioPPP) in the presence...
متن کاملCarbamate kinase can replace in vivo carbamoyl phosphate synthetase. Implications for the evolution of carbamoyl phosphate biosynthesis.
The exclusive involvement of carbamate kinase (CK) in fermentative ATP production and of carbamoyl phosphate synthetase (CPS) in the production of carbamoyl phosphate (CP) for pyrimidines and arginine biosynthesis was challenged by the finding of CK as the only activity synthesising CP in the archaea Pyrococcus furiosus and Pyrococcus abyssi. We now show that CK can replace CPS in vivo: transfo...
متن کاملRestricted passage of reaction intermediates through the ammonia tunnel of carbamoyl phosphate synthetase.
The x-ray crystal structure of the heterodimeric carbamoyl phosphate synthetase from Escherichia coli has identified an intermolecular tunnel that connects the glutamine binding site within the small amidotransferase subunit to the two phosphorylation sites within the large synthetase subunit. The tunneling of the ammonia intermediate through the interior of the protein has been proposed as a m...
متن کاملStructure of human carbamoyl phosphate synthetase: deciphering the on/off switch of human ureagenesis
Human carbamoyl phosphate synthetase (CPS1), a 1500-residue multidomain enzyme, catalyzes the first step of ammonia detoxification to urea requiring N-acetyl-L-glutamate (NAG) as essential activator to prevent ammonia/amino acids depletion. Here we present the crystal structures of CPS1 in the absence and in the presence of NAG, clarifying the on/off-switching of the urea cycle by NAG. By bindi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Archives of biochemistry and biophysics
دوره 425 1 شماره
صفحات -
تاریخ انتشار 2004